Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Human studies often rely on wearable lifelogging cameras that capture videos of individuals and their surroundings to aid in visual confirmation or recollection of daily activities like eating, drinking, and smoking. However, this may include private or sensitive information that may cause some users to refrain from using such monitoring devices. Also, short battery lifetime and large form factors reduce applicability for long-term capture of human activity. Solving this triad of interconnected problems is challenging due to wearable embedded systems’ energy, memory, and computing constraints. Inspired by this critical use case and the unique design problem, we developed NIR-sighted, an architecture for wearable video cameras that navigates this design space via three key ideas: (i) reduce storage and enhance privacy by discarding masked pixels and frames, (ii) enable programmers to generate effective masks with low computational overhead, and (iii) enable the use of small MCUs by moving masking and compression off-chip. Combined together in an end-to-end system, NIR-sighted’s masking capabilities and off-chip compression hardware shrinks systems, stores less data, and enables programmer-defined obfuscation to yield privacy enhancement. The user’s privacy is enhanced significantly as nowhere in the pipeline is any part of the image stored before it is obfuscated. We design a wearable camera called NIR-sightedCam based on this architecture; it is compact and can record IR and grayscale video at 16 and 20+ fps, respectively, for 26 hours nonstop (59 hours with IR disabled) at a fraction of comparable platforms power draw. NIR-sightedCam includes a low-power Field Programmable Gate Array that implements our mJPEG compress/obfuscate hardware, Blindspot. We additionally show the potential for privacy-enhancing function and clinical utility via an in-lab eating study, validated by a nutritionist.more » « less
-
BackgroundPredicting the likelihood of success of weight loss interventions using machine learning (ML) models may enhance intervention effectiveness by enabling timely and dynamic modification of intervention components for nonresponders to treatment. However, a lack of understanding and trust in these ML models impacts adoption among weight management experts. Recent advances in the field of explainable artificial intelligence enable the interpretation of ML models, yet it is unknown whether they enhance model understanding, trust, and adoption among weight management experts. ObjectiveThis study aimed to build and evaluate an ML model that can predict 6-month weight loss success (ie, ≥7% weight loss) from 5 engagement and diet-related features collected over the initial 2 weeks of an intervention, to assess whether providing ML-based explanations increases weight management experts’ agreement with ML model predictions, and to inform factors that influence the understanding and trust of ML models to advance explainability in early prediction of weight loss among weight management experts. MethodsWe trained an ML model using the random forest (RF) algorithm and data from a 6-month weight loss intervention (N=419). We leveraged findings from existing explainability metrics to develop Prime Implicant Maintenance of Outcome (PRIMO), an interactive tool to understand predictions made by the RF model. We asked 14 weight management experts to predict hypothetical participants’ weight loss success before and after using PRIMO. We compared PRIMO with 2 other explainability methods, one based on feature ranking and the other based on conditional probability. We used generalized linear mixed-effects models to evaluate participants’ agreement with ML predictions and conducted likelihood ratio tests to examine the relationship between explainability methods and outcomes for nested models. We conducted guided interviews and thematic analysis to study the impact of our tool on experts’ understanding and trust in the model. ResultsOur RF model had 81% accuracy in the early prediction of weight loss success. Weight management experts were significantly more likely to agree with the model when using PRIMO (χ2=7.9; P=.02) compared with the other 2 methods with odds ratios of 2.52 (95% CI 0.91-7.69) and 3.95 (95% CI 1.50-11.76). From our study, we inferred that our software not only influenced experts’ understanding and trust but also impacted decision-making. Several themes were identified through interviews: preference for multiple explanation types, need to visualize uncertainty in explanations provided by PRIMO, and need for model performance metrics on similar participant test instances. ConclusionsOur results show the potential for weight management experts to agree with the ML-based early prediction of success in weight loss treatment programs, enabling timely and dynamic modification of intervention components to enhance intervention effectiveness. Our findings provide methods for advancing the understandability and trust of ML models among weight management experts.more » « less
-
The COVID-19 pandemic has dramatically increased the use of face masks across the world. Aside from physical distancing, they are among the most effective protection for healthcare workers and the general population. Face masks are passive devices, however, and cannot alert the user in case of improper fit or mask degradation. Additionally, face masks are optimally positioned to give unique insight into some personal health metrics. Recognizing this limitation and opportunity, we present FaceBit: an open-source research platform for smart face mask applications. FaceBit's design was informed by needfinding studies with a cohort of health professionals. Small and easily secured into any face mask, FaceBit is accompanied by a mobile application that provides a user interface and facilitates research. It monitors heart rate without skin contact via ballistocardiography, respiration rate via temperature changes, and mask-fit and wear time from pressure signals, all on-device with an energy-efficient runtime system. FaceBit can harvest energy from breathing, motion, or sunlight to supplement its tiny primary cell battery that alone delivers a battery lifetime of 11 days or more. FaceBit empowers the mobile computing community to jumpstart research in smart face mask sensing and inference, and provides a sustainable, convenient form factor for health management, applicable to COVID-19 frontline workers and beyond.more » « less
An official website of the United States government
